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Abstract

We study the influence of space charge on the crossing
of the second-order resonance and the associated space-
charge limit in high-intensity rings. Two-dimensional sim-
ulation studies are compared and found to agree with the
envelope models in the finding of an increased intensity
limit due to the coherent frequency shift. We also discuss
application of this effect to bunched beams and multi-turn
injection painting, and the effect of high-order resonances
and issues of the envelope instability.

1 INTRODUCTION

A correct treatment of resonance crossing in the pres-
ence of space charge must take into account the coherent
behavior of the beam [1]. Recently, we applied coherent
resonance theory to the space-charge limit studies in the
SNS [2]. First, we confirmed collective resonance response
of an unbunched beam for various beam distributions. We
then extended our studies to a bunched beam as well as to
the process of beam accumulation.

In general, the coherent resonance condition has the
form:

n = 
m � m�0 ��
m; (1)

where
m is the frequency of the mth-order coherent beam
mode,�
m is the coherent space-charge tune shift of the
mth-order mode from its zero-current value (m�0), andn
stands for the error Fourier harmonic. In this paper we con-
sider them = 2 case which is associated with the space
charge limit imposed by the half-integer resonance.

2 IMPERFECTION RESONANCE

2.1 Coherent space-charge limit

We start with exact numerical solutions of the envelope
equations. First, we consider the 1/2 resonance near the
unsplit-tune working point�0;x;y = 4:6. We assume equal
emittances inx andy and solve the envelope equations with
error Fourier harmonics of1 �10�3 units (relative to the un-
perturbed focusing constant), driving then = 9 harmonic.
The maximum envelope excursion grows with increasing
beam intensity, which brings the coherent mode frequency
closer to the resonance. Figure 1 shows the maximum en-
velopes for this case as the function of depressed incoher-
ent tune�x;y for both the symmetric and anti-symmetric
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errors. The envelope increases noticeably only with the
coherent frequency crossing the integer, which occurs at
�x;y = 4:467 (beam intensity equal to4

3
��inc) for the out-

of-phase mode, and at�x;y = 4:4 (beam intensity equal to
2��inc) for the in-phase mode. Due to the dependence of
the envelope eigenfrequency on amplitude the maximum
growth happens for higher beam intensities at�x;y = 4:44
for the out-of-phase and�x;y = 4:37 for the in-phase mode.
A zero-current envelope response to this1=2 resonance is
obtained by varying the working point�0;x;y.
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Figure 1: Response curves for the unsplit-tune working
point (numerical solution of envelope equations).

The size of the maximum envelope excursion, as well
as the width of the response curve, is a function of the
strength of the imperfection resonance. Figure 2 shows
the maximumy-envelopes for(�0x; �0y) = (6:45; 4:6) and
three different magnitudes of error. The intensity parameter
I � ��sc=��inc (abscissa) is expressed as space-charge
tune shift normalized to the distance from the bare tune to
the half-integer (��inc). The strongly asymmetric shape
of the envelope response curves is a result of the nonlinear
nature of the envelope equation, in particular the increase
of envelope frequency with amplitude.

We now proceed to the realistic SNS lattice with the
working point at(�0x; �0y) = (6:45; 4:6). The gradient
error is introduced in a single quadrupole with the normal-
ized strength of an error�k = 2:5 � 10�3 units. Simula-
tions were done using the Particle-In-Cell (PIC) code OR-
BIT [3]. The results of simulations are presented in Fig. 3,
which confirm the envelope response expected based on
the envelope equations (Fig. 2). In Figs. 3-4, the maxi-
mum beam envelope for each intensity is plotted with blue
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Figure 2: Response curves for various strengths of reso-
nance driving error ( solution of envelope equation). In-
coherent space-charge limit corresponds toI = 1, while
the coherent resonance condition in this case corresponds
to I = 1:635.

0.75 1 1.25 1.5 1.75 2 2.25 2.5
normalized tune shift

1.25

1.5

1.75

2

2.25

2.5

2.75

3

no
rm

al
iz

ed
en

ve
lo

pe

Figure 3: Response curve for the split-tune working point
(PIC simulation, WB distribution, SNS lattice).

dots, the green (short dash) vertical line indicates the inco-
herent space-charge limit for a WB beam, the pink (long
dash) line - the incoherent limit for uniform density beam,
while red (solid) line - the coherent resonance condition
[2]. These features of an envelope response were recently
demonstrated for the LANL PSR [4] and the FNAL booster
[5]. An important feature of coherent non-linear resonant
response is different beam behavior depending on whether
the resonance is crossed in the direction of increasing or
decreasing space-charge effect. Recently, an experimental
study of this effect was performed by Uesugi et al. [6].

3 STRUCTURE RESONANCE

One of the SNS working points(�0x; �0y) =
(6:23; 6:20) lies very close to the half-integer structure res-
onance with harmonicn = 12. It is thus extremely impor-
tant to understand associated intensity limitation.

3.1 Unbunched beams

Simulations are done without errors so that only the lat-
tice harmonics are present, withn = 12 being the struc-
ture harmonic due the SNS superperiodicity of4. A single-
particle dynamics approach would not allow the incoherent
tune to approach an integer because of beam envelope beat-
ing, starting at intensities for which the incoherent tunes
are still well above the integer (similar to the zero-current
envelope response in Fig. 1) due to the finite bandwidth
of the resonance. The space-charge limit for this working
point corresponds to4��inc=3 (b = a), but the beam enve-
lope response to this coherent 1/2 resonance starts at lower
intensities, similar to the response curves in Fig. 2. Sim-
ulations with both uniform and non-uniform distributions
[2] confirmed the resonance response corresponding to co-
herent resonance intensities. An example of the response
diagram is shown in Fig. 4.
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Figure 4: Response curve near the structure resonance (PIC
simulations, WB distribution, SNS lattice).

3.2 Bunched beams and multi-turn injection

In the SNS, the full injection process takes about one
synchrotron oscillation. It thus seems reasonable to expect
that the impact of synchrotron motion will not be impor-
tant. Simulations are performed with 1052-turn injection
for a beam with momentum spread ofdp=p = 0:7%. The
tune foot-prints of a final full intensity beam are plotted at
the end of accumulation process. Figure 5 shows the foot-
prints for three beam intensities:N = 2 � 1014 protons (red
color), N = 3 � 1014 (pink color),N = 4 � 1014 (green
color). Note that adp=p spread was present in the simu-
lation but its effect on the tune spread was excluded from
the pictorial representation. A modification of the space-
charge foot-print by thedp=p spread is discussed elsewhere
[7]. For example, the combined tune spread (space charge
anddp=p) extends down to the incoherent tune of6:0 for
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Figure 5: Tune footprints at the end of accumulation for
three intensities of the beam.

the first case ofN = 2 � 1014. The time evolution of the
vertical rms emittances, corresponding to Fig. 5, is shown
in Fig. 6. No resonant effect is observed until the beam gets
into the bandwidth of the coherent resonance [2].
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Figure 6: Vertical rms emittance during multiturn injection
process for three intensities of the beam.

4 HIGH-ORDER RESONANCES

The coherent resonance condition for the high-order res-
onances is very close to the incoherent one. In some cases,
the space-charge limit may be restricted by these high-
order resonances. This, for example, is true when one has a
split-tune working point with weak space charge coupling,
as in the case of(6:3; 5:8) of the SNS. As a result, the beam
responds first to a fourth-order coherent sum resonance
driven by the fringe fields with strong intensity limitation.
On the other hand, for the(6:23; 6:20) working point with
strong space-charge coupling it was found that the space-
charge limit is not significantly altered by the presence of
the high-order resonance of realistic strength, which allows
the beam intensity to increase slightly beyondN = 2 �1014

for this working point [8]. The tolerable intensity limits
is determined by allowed beam losses at restricting accep-
tance.

5 ENVELOPE INSTABILITY

The envelope instability occurs if the zero-current phase
advance per focusing cell is above a quarter-integer, i.e. for
�0 > 900. Space charge then leads to an extended stop-
band starting slightly below� = 900. Several cases of the
envelope instability were explored [2]: 1) “superstructure”
resonance, which is a direct analogy with the envelope in-
stability in the transport channel [9], 2) envelope instability
driven by the imperfection errors near the quarter-integer
tunes, 3) envelope instability driven by the imperfection er-
rors near the 1/2 tunes. In these studies we have used the
KVXYG [10] code, which matches KV-envelopes and de-
termines the eigenvalues (growth factors) of envelope per-
turbations. For example, for the case of the envelope insta-
bility near the 1/4 tunes we concluded that the imperfec-
tion driven envelope instability for working points above
the fractional tune of 0.25 (likewise 0.75) is ignorable [2].

6 SUMMARY

Application of the coherent resonance condition both
to the imperfection and structure resonances is discussed.
We explore the applicability of such an effect to the SNS
bunched beam and multi-turn injection process. In addi-
tion, we address the issue of the envelope instability in a
circular machine.
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